Comparing Algorithms of Community Structure in Networks
نویسندگان
چکیده
منابع مشابه
Comparing Community Structure to Characteristics in Online Collegiate Social Networks
We study the structure of social networks of students by examining the graphs of Facebook “friendships” at five U.S. universities at a single point in time. We investigate the community structure of each single-institution network and employ visual and quantitative tools, including standardized pair-counting methods, to measure the correlations between the network communities and a set of self-...
متن کاملOverview of Algorithms for Detecting Community Structure in Complex Networks
Community structure is a very important property of complex networks. Detecting communities in networks is of great importance in biology, computer science, sociology and so on. In recent years, a lot of community discovery algorithms have been proposed aiming at different kinds of large scale complex networks. In this paper, we review some latest representative algorithms, focusing on the impr...
متن کاملComparing community structure identification
We compare recent approaches to community structure identification in terms of sensitivity and computational cost. The recently proposed modularity measure is revisited and the performance of the methods as applied to ad hoc networks with known community structure, is compared. We find that the most accurate methods tend to be more computationally expensive, and that both aspects need to be con...
متن کاملComparing Structure Learning Algorithms of
In this paper, we empirically evaluate effectiveness of structure learning of Bayesian Network when applying such networks to the domain of Keystroke Dynamics authentication. We compare four structure learning methods of Bayesian Network Classifier – Genetic, TAN, K2, and Hill Climbing algorithms, on our authentication model, namely Classify User via Short-text and IP Model (CUSIM). The results...
متن کاملComparing diagnosis of depression in depressed patients by EEG, based on two algorithms :Artificial Nerve Networks and Neuro-Fuzy Networks
Background and aims: Depression disorder is one of the most common diseases, but the diagnosis is widely complicated and controversial because of interventions, overlapping and confusing nature of the disease. So, keeping previous patients’ profile seems effective for diagnosis and treatment of present patients. Use of this memory is latent in synthetic neuro-fuzzy algorithm. P...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indian Journal of Science and Technology
سال: 2016
ISSN: 0974-5645,0974-6846
DOI: 10.17485/ijst/2016/v9i44/105088